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expensive computation. ECMs present electrical-circuit-
based analogs to reproduce a LiB’s current/voltage dy-
namics. They have simple structures, which, in turn, lead
to considerable computational efficiency. The circuit-based
structures also allow interpretation from a physical per-
spective, so one can easily associate them with the charac-
teristics and phenomenological observations of LiBs. These
merits make ECMs a favorable, and increasingly popular,
choice in practical battery engineering. Yet, a challenge
for ECMs is their relatively limited accuracy due to the
simple structures, which restricts their application to a
certain extent.

Both electrochemical models and ECMs can be considered
as physics-based models. Despite many recent research ad-
vances, they are still found inadequate to capture the full
spectrum of LiBs’ complex dynamics resulting from a mix
of electrochemical, thermal, and electrical processes and
parasite reactions, especially when there are constraints on
computational power. Given that today’s LiB systems gen-
erate much data in operation, pure data-driven approaches
from the perspective of system identification or machine
learning provide a valuable alternative to LiB model-
ing (Ljung, 1999; Verhaegen and Verdult, 2007; Murphy,
2012; Hu and de Callafon, 2017; Hu et al., 2020). Skipping
the underlying physics and peculiarities, these approaches
extract black-box models to relate the input and output
data of LiBs by referring to statistical and optimization
methods. A few relevant investigations can be found in

Lithium-ion batteries (LiBs) have found wide use in nu-
merous applications ranging from portable electronics to
electric vehicles and grid-scale energy storage. The pur-
suit for better LiB technologies has gained ever-increasing
momentum in both academia and industry (Goodenough
and Park, 2013; Plett, 2015; Scrosati et al., 2015; Rahn
and Wang, 2013; Liu et al., 2019). The development
of advanced battery management systems (BMSs) is at
the forefront of related research, due to their essential
role in ensuring the operating performance and safety of
LiBs Wang et al. (2017).

Mathematical models that describe LiB dynamics are fun-
damental for BMS algorithms. The literature has inten-
sively investigated two main types of battery models: elec-
trochemical models, and equivalent circuit models (ECMs)
(Santhanagopalan et al., 2006; Di Domenico et al., 2010;
Forman et al., 2012; Pinson and Bazant, 2012; Hatzell
et al., 2012; Moura et al., 2017; Lin et al., 2014; Xia et al.,
2016; Farmann and Sauer, 2016; Rahn and Wang, 2013;
Ramadesigan et al., 2012; Li et al., 2018; Zou et al., 2018;
Plett, 2015; Tian et al., 2021). The electrochemical models
build upon electrochemical principles to characterize the
electrochemical reactions, Li-ion diffusion, and concentra-
tion and potential changes in the electrode/electrolyte
during charging/discharging of LiBs. They usually offer
high fidelity and descriptive accuracy but also require
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Abstract: Equivalent circuit models (ECMs) are a popular and important tool to characterize
and safely use lithium-ion batteries, due to their parsimonious structure, fast computation,
and physical interpretability. However, they are often limited in predictive accuracy and thus
insufficient for some critical applications. To overcome the limitation, this paper proposes
to integrate the linear double-capacitor model, an ECM, with a data-based Volterra model
to build a physics-informed data-driven model for lithium-ion batteries, which is named as
Volterra double-capacitor (VDC) model. The VDC model uses the ECM as a feature extractor
to capture physical features of charging/discharging; taking the features, the Volterra model
then approximates the complex nonlinear dynamics inherent to the battery and predicts the
terminal voltage. In particular, the Volterra model exploits a tensor network representation to
break the curse of dimensionality. Further, a parameter identification approach is constructed
to extract the parameters of the model from data. The experimental validation demonstrates
this new model’s high accuracy, suggesting its promise for various future applications.
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Murphey et al. (2012); Hu et al. (2015); Yang et al. (2018);
Chemali et al. (2018); Hu et al. (2018); Ardeshiri et al.
(2020); Hannan et al. (2020). With a data-driven nature,
these models can be conveniently constructed from data to
show good fitting accuracy. Nonetheless, their performance
can be limited by the data richness and informativeness
and may also suffer from the overfitting issue in training.

This study identifies the complementarity between physics-
and data-based modeling and proposes to harness their
combined strengths to attain LiB modeling with both high
predictive accuracy and structural efficiency. To this end,
we integrate an ECM with a data-based Volterra model.
The obtained hybrid model by structure consists of a linear
and a nonlinear part in cascade. The linear part is a linear
double-capacitor model, which is an ECM. It serves as a
feature extractor to produce physics-based features char-
acteristic of the charging/discharging. The nonlinear part
is made up of a Volterra model based on the tensor network
(TN) representation to simulate the nonlinear dynamic re-
lationship between the produced features and the terminal
voltage. Note that the TN representation will allow one to
exploit a Volterra model of high degree to enhance the
approximation of nonlinearity, while breaking the curse of
dimensionality through trading storage for computation.
In addition, the estimation of the linear and nonlinear part
is presented in this paper. A low-rank TN representation
of the Volterra model is obtained. The proposed hybrid
model, named as Volterra Double-Capacitor (VDC) model,
illustrates high accuracy in terminal voltage prediction.
The design of the VDCmodel is partly inspired by the non-
linear double-capacitor (NDC) model (Tian et al., 2021).
The NDC model couples a linear double-capacitor circuit
with a nonlinear voltage source to simulate the charge
diffusion inside an electrode and the nonlinear voltage
behavior simultaneously. Compared to the NDC model,
the proposed VDC study takes a data-driven viewpoint
and leverages the powerful Volterra model to describe
the complicated nonlinearity ingrained in LiBs, while still
maintaining a relatively simple structure.

The rest of this paper is organized as follows. Section 2 in-
troduces the basic NDC model and the TN-based Volterra
model. The VDC model is formulated in Section 3. The
corresponding parameter estimation for both the linear
and nonlinear parts of the VDC model is presented in
Section 4. Section 5 illustrates the experimental validation
results. Finally, Section 6 summarizes this paper.

2. OVERVIEW OF THE NDC MODEL AND
TN-BASED VOLTERRA MODEL

This section will begin with an overview of the NDC
model and then proceed to describe the TN-based Volterra
model. The introduction will lay a foundation for the
development of the VDC model in Section 3.

2.1 The Basic Nonlinear Double-Capacitor Model

The NDC model was first proposed in Tian et al. (2021),
a basic version of which is shown in Fig. 1. The model is
a cascade of a pair of parallel RC circuits and a nonlinear
voltage source. The RC circuits simulate an electrode of a
LiB cell. Specifically, Rb-Cb represents an analogy to the

Fig. 1. The basic NDC model.

bulk inner part of the electrode, and Rs-Cs corresponds to
the surface area; the charge transfer between Cb and Cs

mimics the diffusion of lithium ions within the electrode.
The nonlinear voltage source U = h(Vs) depicts the
battery’s nonlinear voltage behavior, where h(·) is a static
nonlinear function. The terminal voltage is the sum of
U and the voltage across the internal resistance R0. The
NDC model generalizes a linear double-capacitor model
proposed in Johnson et al. (2001) to take into account a
LiB cell’s inherent nonlinearity. It can also be justified as
an approximation of the single particle model, which is a
reduced-order electrochemical model.

For the NDC model, the dynamics of the parallel RC
circuit can be expressed as[

V̇b (t)

V̇s (t)

]
= A

[
Vb (t)
Vs (t)

]
+BI (t) (1)

where I is the applied current (I > 0 for charging, and
I < 0 for discharging), Vb and Vs are the voltages across
Cb and Cs, respectively, and

A =

⎡
⎢⎣

−1

Cb (Rb +Rs)

1

Cb (Rb +Rs)

1

Cs (Rb +Rs)

−1

Cs (Rb +Rs)

⎤
⎥⎦ , B =

⎡
⎢⎣

Rs

Cb (Rb +Rs)

Rb

Cs (Rb +Rs)

⎤
⎥⎦

Here, Vb = Vs = 1 V when the cell is at full charge
(SoC = 1); Vb = Vs = 0 V at full depletion (SoC = 0).
Here, SoC is specifically defined as

SoC =
CbVb + CsVs

Cb + Cs
(2)

Based on (1), Vs(t) is governed by the following discrete-
time transfer function in a zero-order-hold setting:

Vs (t) =
( β1q

−1

1− q−1︸ ︷︷ ︸
G1(q−1)

+
β2q

−1

1− β3q−1︸ ︷︷ ︸
G2(q−1)

)
I (t) + Vs (0) (3)

where q−1 is the backward time-shift operator, G1(q
−1) is

an integrator, and G2(q
−1) is a first-order filter. Note that

t = kΔT for k ∈ Z
+, where ΔT is the sampling interval.

The terminal voltage is given by

V (t) = h(Vs(t)) + I(t)R0

2.2 TN-Based Representation of a Volterra Model

A discrete-time Volterra model of degree d with the input
u(t) ∈ R

p and the output y(t) ∈ R can be expressed as

y (t) = c0 +
d∑

i=1

M−1∑
k1,··· ,ki=0

p−1∑
α1,··· ,αi=0

ck,α1:i φ
k,α
1:i (u (t)) (4)
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where φk,α
1:i (·) ∈ R is the ith kernel function, ck,α1:i ∈ R the

kernel coefficient, and M the memory length. Further,

φk,α
1:i (u (t)) =

i∏
j=1

u(αj+1) (t− kj) (5)

ck,α1:i = ci (k1, α1; k2, α2; · · · ; ki, αi) (6)

Here, u(αj+1) is the (αj + 1)th element of u.

Capable of acting on a high-dimensional space, the
Volterra model can provide strong representation power to
characterize nonlinear relationship in data, with increas-
ing application across various disciplines (Wambacq and
Sansen, 1998; Azpicueta-Ruiz et al., 2011; Stoudenmire
and Schwab, 2016; Burt and de Morais Goulart, 2018; Hu
et al., 2019). Here, it will be exploited as a data-driven
nonlinear mapping, playing a role that is played by h(·)
in the NDC model, to capture the complicated, elusive
nonlinearities ingrained in LiBs. However, the number of
parameters in (4) will increase exponentially when d goes
up, making the storage requirement grow exponentially
and causing the curse of dimensionality (Batselier et al.,
2017). This limits the application of the Volterra model to
efficiently grasp highly nonlinear phenomena.

A TN representation of a Volterra model will resolve the
issue. A d-way tensor is denoted as T ∈ R

n1×n2×···×nd .
Each entry of T is denoted as T (i1i2···id) via d integer
indices (i1i2 · · · id).
Definition 1. (The k-Mode Product (Oseledets, 2011))
For a tensor T ∈ R

n1×···×nk×···×nd and a matrix U ∈
R

pk×nk , the k-mode product X = T ×k U is defined as

X (i1···ik−1jik+1···id) =
nk∑

ik=1

U(jik)T (i1···ik−1ikik+1···id)

and X ∈ R
n1×···×nk−1×pk×nk+1×···×nd .

Definition 2. (Tensor Train (TT) Decomposition (Os-
eledets, 2011)) The d-way tensor T can be represented
by a linear TN such that

T (i1i2···id) =
∑

α0,··· ,αd

T (α0i1α1)

1 T (α1i2α2)

2 · · ·T (αd−1idαd)

d

where T1, · · · ,Td are called TT-cores. Each Tk is a 3-way
tensor of dimensions rk−1 × nk × rk, where rk−1, rk are
called the TT-ranks and r0 = rd = 1.

As in Batselier et al. (2017), one can incorporate all the
kernel coefficients in (6) into a (d+1)-way Volterra tensor
V ∈ R

(pM+1)×···×(pM+1)×1 such that

y (t) = V×1 uT
t ×2 uT

t · · · ×d uT
t

= (V1×2 uT
t )(V2×2 uT

t ) · · · (Vd×2 uT
t )

(7)

where

ut =
[
1,uT (t) ,uT (t− 1) , · · · ,uT (t−M + 1)

]T ∈ R
pM+1

and {V1, · · · ,Vd} are the TT-cores of the Volterra tensor
V . The TT-cores Vi ∈ R

ri−1×(pM+1)×ri with r0 = rd = 1
and {r1, · · · , rd−1} to be identified.

With the above formulation, rather than estimating all the
parameters in (6) at prohibitive computational costs due
to the curse of dimensionality, one just needs to estimate
its dual TN representation {V1, · · · ,Vd} whose storage
requirement is O((d − 1)r2(pM + 1) + r(pM + 1)) with

Fig. 2. The structure of the proposed VDC model.

r = max{r1, · · · , rd−1}. The storage requirement can be
greatly reduced if r is sufficiently small. The computational
complexity of using (7) is approximately O(d(pM +1)r2).

3. FORMULATION OF THE VDC MODEL

This section focuses on formulating the VDC model by
drawing upon the NDC model and TN-based Volterra
model. The motivation lies in the key insight that, even
though the NDC model demonstrates effectiveness for LiB
modeling, there is still a space for improvements. First, the
NDC model considers only a simple static nonlinear func-
tion h(·) and neglects other dynamic nonlinear phenom-
ena, e.g., hysteresis. Hence, it uses h(·) to implicitly enforce
a trade-off in describing both static and dynamic nonlinear
behaviors of a cell, at the sacrifice of actual predictive
accuracy. For example, a simple choice for a static h(·)
such as the SoC-OCV mapping may be appropriate when
the battery is in an idling period. But the prediction will
be less accurate during charging or discharging. Second,
only Vs-dependent nonlinearity is addressed in the NDC
model, where Vs can be viewed as a physical feature of
charging/discharging. Yet, a LiB cell’s nonlinear dynamics
is practically more diverse, implying a need for using a
selection of more useful features.

Based on the above, we propose the VDC model, which
introduces two crucial modifications to enhance the pre-
diction performance. First, the TN-based Volterra model
in (7) is selected as the nonlinear function h(·). Second,
SoC(t) is included as another input feature besides Vs(t).
The structure of the VDC model is shown in Fig. 2.
Denoting the output of the Volterra model as y(t) ∈ R,
the terminal voltage based on the model is then given by

V (t) = y(t) + I(t)R0 (8)

The introduction of SoC as a feature explicitly makes the
VDC model to be SoC-dependent. This is reasonable and
necessary, since the SoC dependence of the nonlinear be-
haviors is a well-known attribute of LiBs. Note that Vs(t)
will be varying around SoC(t) during charging/discharging
and Vs(t) = SoC(t) when the battery is fully at rest. It is
worth noting that the static and dynamic behaviors are
now separated by the interactive behavior of Vs(t) and
SoC(t). The TN-based Volterra model hence can capture
not only complicated nonlinear SoC-dependent behaviors,
but also the couplings between SoC(t) and Vs(t).

4. PARAMETER ESTIMATION

In this section, we develop a parameter estimation ap-
proach for the proposed VDC model. The approach in-
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cludes a two-step procedure. The first step is to estimate
the parameters of the linear part, including β1, β2, β3, and
R0. Then, the Vs(t) and SoC(t) can be computed as the
input features for h(·). The second step is the estimation
of the nonlinear part, where the TT-cores {V1, · · · ,Vd} of
the Volterra model are obtained.

4.1 Estimation of the Linear Part

The instantaneous resistance R0 can be roughly deter-
mined using the abrupt voltage jump when there is a step
change in the input current. We will use a constant R0 and
the nonlinear correction on R0 as a function of SoC will
be implicitly embedded into h(·).
The estimation of β1, β2, β3 is equivalent to approxi-
mate G1(q

−1) and G2(q
−1) in (3) from the input/output

measurement data {I(t), V (t)}. The basic NDC model
structure can be used to initialize the parameter estima-
tion. Select the SoC-OCV curve for the basic NDC model
such that OCV = hinit(SoC), where hinit(·) is an initial
static nonlinear function for h(·). Then, one can derive

the approximation of Vs(t), denoted as V̂s(t), from (3)

V̂s (t) = h−1
init (V (t)− I (t)R0) (9)

where h−1
init(·) is the inverse of hinit(·). Note that V̂s(t) is

closely related but not identical to SoC, and (9) exactly
holds only during an idling period. Thus, hinit(·) is a rea-

sonable choice, but may not give a precise V̂s(t). However,
the data-driven part in Section 4.2 will serve as a nonlinear
correction to account for model errors of the linear part.

Since G1(q
−1) is an integrator, it can be approximated by

considering it as an SoC estimator and β1 is determined
by the inverse of the total capacity of a battery cell. Thus,

SoC (t) = G1
1

(
q−1

)
I (t) (10)

Finally, β2, β3 can be obtained by a linear regression
optimization on G2(q

−1) as follows

V̂s (t)− SoC (t)− Vs (0) =
β2q

−1

1− β3q−1
I (t) (11)

The parameters for the discrete-time model can be trans-
formed back to the physical parameters (Tian et al., 2021).

4.2 Estimation of the Nonlinear Part

We have obtained β1, β2, β3, and R0 of the VDC model
from Section 4.1. The two input features Vs(t) and SoC(t)
can be then computed using (3) and (10). The rest is to
identify the TT-cores {V1, · · · ,Vd} of the Volterra model
in (7) by minimizing the following cost function

J =
1

2

N∑
t=1

(y (t)− h (u (t)))
2

(12)

from the input feature vector

u(t) = [Vs(t), SoC(t)]
T (13)

to the output electrode voltage y(t) in (8)

y(t) = V (t)− I(t)R0 (14)

Following the techniques proposed in Stoudenmire and
Schwab (2016); Batselier et al. (2017), the TT-cores can
be estimated in an iterative fashion. In this paper, we are

(a) The Volterra TN structure.

(b) Estimate an intermediate bond core Bk while fixing the
remaining four parts {w1(t),w2(t),w3(t),w4(t)}.

Fig. 3. Illustration of a TN-based Volterra model.

updating two neighboring TT-cores each time so that the
TT-ranks can be adaptively adjusted to seek a low-rank
representation, which is crucial to avoid overfitting. Denote
pu = pM+1. The computation process in (7) is illustrated
in Fig. 3a, which involves multiple 2-mode products. Sup-
pose that we are updating the pair {Vk,Vk+1} during an
intermediate iteration. This pair as a whole can be treated
as a 4-way bond core Bk ∈ R

rk−1×pu×pu×rk+1 as shown in
Fig. 3b. The bond core Bk is then updated whereas the
remaining four parts {w1(t),w2(t),w3(t),w4(t)} are fixed
during this iteration.

More specifically, the voltage prediction ŷ(t) is

ŷ (t) = Bk ×1 w1 (t)×2 w
T
2 (t)×3 w

T
3 (t)×4 w

T
4 (t) (15)

where
w1 (t) =

(
V1 ×2 u

T
t

) · · · (Vk−1 ×2 u
T
t

)
w2 (t) = w3 (t) = ut

w4 (t) =
(
Vk+2 ×2 u

T
t

) · · · (Vd ×2 u
T
t

) (16)

The bond core Bk can be estimated by solving a least-
squares problem such that

Y = Wvec (Bk) (17)

where

W =

⎡
⎢⎢⎢⎣

wT
4 (1)⊗wT

3 (1)⊗wT
2 (1)⊗w1 (1)

wT
4 (2)⊗wT

3 (2)⊗wT
2 (2)⊗w1 (2)

...
wT

4 (N)⊗wT
3 (N)⊗wT

2 (N)⊗w1 (N)

⎤
⎥⎥⎥⎦

Y = [ y (1) , y (2) , · · · , y (N) ]
T

(18)

and N is the number of available data points.

Each component in the pair {Vk,Vk+1} is then updated by
splitting up Bk by using the singular value decomposition
(SVD), where the TT-rank rk is determined. We propose
to use a ε-truncated SVD (Oseledets, 2011) where ε is the
percentage of components to be omitted. For example, if
the full SVD of a matrix

B = LSZT = [L1 L2]

[
S1 0
0 S2

] [
ZT

1

ZT
2

]
(19)

then the ε-truncated SVD determines the rank r such
that B ≈ L1S1Z

T
1 and the less significant components

contained in S2 are omitted as many as possible so that
their sum of squares is not greater than ε2||S||2F . Seeking
a low-rank estimation of the TT-cores {V1, · · · ,Vd} can
be regarded as introducing regularization during the op-
timization, which is common practice in machine learning
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to overcome overfitting problems for complicated models
with tons of parameters.

Algorithm 1: The alternating linear scheme
with ε-truncated SVD
Input: Measurement data {u(t), y(t)} in (13) and

(14) for t = 1, · · · , N , memory length M ,
degree d, expected accuracy ε in percentage

Output: {V1, · · · ,Vd} in (7) minimizing (12)
1 Initialization: Construct ut in (7); r0 ← 1, rd ← 1;
initialize left orthogonal TN-cores {V1, · · · ,Vd} of
ranks 1, i.e., ri ← 1, i = 1, 2, · · · , d− 1; the starting
index k ← d− 1; sweeping direction R2L ← ‘left’
2 while the termination criterion is not satisfied do

Compute {W,Y} in (18)
Bk ← reshape(pinv(W)Y, [rk−1, pu, pu, rk+1])
Bk ← reshape(Bk, [rk−1pu, purk+1])
{rk,L1,S1,Z1} ← ε-truncated SVD on Bk

if R2L is ‘left’ then
Split Bk while keeping left orthogonal:
Vk ← reshape(L1S1, [rk−1, pu, rk])
Vk+1 ← reshape(ZT

1 , [rk, pu, rk+1])
if k > 1 then

k ← k − 1
else

R2L←‘right’

else
Split Bk while keeping right orthogonal:
Vk ← reshape(L1, [rk−1, pu, rk])
Vk+1 ← reshape(S1Z

T
1 , [rk, pu, rk+1])

if k < d− 1 then
k ← k + 1

else
R2L←‘left’

The above discussions are summarized in Algorithm 1.
The bond core Bk is updated iteratively by sweeping
the TN back and forth. The termination criterion for
the iterative algorithm can be set as reaching either a
minimum cost threshold or maximum iterations. The TT-
cores are initialized to be either left or right orthogonal to
facilitate the numerical stability of the sweeping algorithm
(Holtz et al., 2012).

5. EXPERIMENTAL RESULTS

This section shows the experimental validation of the VDC
model. The experiments were conducted on a Panasonic
NCR18650B LiB cell using a PEC SBT4050 battery tester.

The estimate of the internal resistor is R0 = 0.08 Ω. The
total capacity in terms of the capacitance is estimated as
11, 011 F. Thus, β1 = 1/11, 011 in G1(q

−1). There are two
training data sets. The first set, denoted as {I(t), V (t)}, is
based on a variable-current profile (0∼6 A), which is shown
in Fig. 5 along with the terminal voltage measurements.
This data set conveys information about the dynamics
of the model. The second data set is a formulated SoC-
OCV step-wise mapping as shown in Fig. 6, which provides
static information and is only used for the input of the
Volterra model in the VDC model. The SoC-OCV data set
is obtained as follows. First, 21 equidistantly data points
{SoCi,OCVi}, i = 1, · · · , 21 are sampled every 5% SoC

Fig. 4. Approximating the nonlinear function h(·) by using
the TN-based Volterra model.
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Fig. 5. Illustration of the voltage prediction of the proposed
model for the variable-current profile 0∼6 A.

step from the SoC-OCV curve. Then, each sampled point
is augmented for 500 seconds (i.e., 500 points in our case).
Following the discussion in Section 4.1, one can obtain that
β2 = 7.9737 × 10−4, β3 = 0.9757 by using the first set of
training data {I(t), V (t)}. By now, the estimation of the
linear part has been completed. The next is to identify the
TN-based Volterra model as discussed in Section 4.2. The
input feature vector corresponding to the first set of the
training data, denoted as udyn(t), can be now determined
by (13). The output ydyn(t) is computed via (14). Here, the
subscript “dyn” is shorthand for “dynamic”. The input
feature vector corresponding to the second set of the
training data can be similarly determined and given by
usta(t) = [SoCi(t), SoCi(t)]

T. The output ysta = OCVi(t).
The subscript “sta” is shorthand for “static”. Note that
usta(t) corresponds to the period when the battery is fully
at rest and so Vs(t) = SoC(t). Fig. 4 shows a schematic
illustration of the above discussion.

The parameters of the TN-based Volterra model are set
as follows: M = 3, d = 5, ε = 0.01. Thus, pu = pM +
1 = 7. The estimated TT-ranks are {r0 = 1, r1 = 5, r2 =
15, r3 = 15, r4 = 5, r5 = 1}. Further, for comparison,
we include the prediction results of the Thevenin (with
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Fig. 6. The model prediction of SoC-OCV relationship
every 5% SoC step from SoC = 0% to SoC = 100%.

2 RC circuits) and NDC (with 1 RC circuit) models, see
Fig. 5 for the training results. The VDC model provides
consistently superior prediction accuracy while the SoC is
varying. The prediction of the NDC model is better than
the Thevenin model but still less accurate than the VDC
model. The performance of the VDC model results from
its capability to capture more complex coupling dynamics
and produce an inherently SoC-dependent prediction. The
TT-ranks are adjusted adaptively during the iterations
to seek a representation as low-rank as possible and
avoid overfitting. The proposed VDC model is also precise
in maintaining the SoC-OCV relationship as shown in
Fig. 6. Thus, the VDC model is expected to have good
performance in both dynamic and static predictions.

The identified models are further validated on a different
data set based on a variable-current profile (1.5∼2.5 A)
as shown in Fig. 7. The VDC model still shows the
best prediction performance consistently. The low-rank
representation obtained from the algorithm enables the
identified model to be more robust to different current
profiles and reduce the overfitting problems.

6. CONCLUSION

High-performance models are essential to advanced BMS
algorithms to guarantee the operating performance and
safety of LiBs. While ECMs have proven their value and
merits, they are often unable to meet the growing demands
for predictive accuracy. To address this issue, this paper
proposes to integrate an ECM with a TN-based Volterra
model to create a hybrid model lying at the interface of
physics- and data-based modeling. The new model, named
as VDC, uses physical features from the ECM to inform
the Volterra model such that the latter can accurately
capture the nonlinear relationship in the data collected
from LiBs. An iterative sweeping algorithm is derived to
identify the TN-based Volterra model and can adaptively
adjust the TT-ranks from the data to avoid overfitting.
The experimental validation shows that the proposed
model yields very high accuracy in voltage prediction. The
model holds a promise for improving the BMS performance
across various application domains.
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